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Abstract-The inverse heat conduction problem is defined as one for which interior conditions are 
prescribed and the desired quantity is a surface condition. In the present work, the surface temperature 
histories for an infinite slab are evaluated using discrete and inaccurate internal measurements. The 
method of Backus and Gilbert is used to determine the resolving power of the measurements and the 
accuracy of the resulting surface temperature predictions. The trade-offs that exist between resolving 

power and accuracy are illustrated. 

NOMENCLATURE 

kernel matrix, equation (22); 
vector of coefhcients a, equation (45); 
pseudoinverse of A ; 
integration weighting function, 
equation (36); 
error matrix (covariance matrix), 
equation (45); 
identity matrix ; 
integrating kernel, equation (14); 
width of slab; 
number of measurements; 
spread matrix, equation (48); 
spread ; 
temperature ; 
surface temperature; 
vector of surface temperatures; 
estimate of surface temperature; 
estimate of surface temperature vector T,; 
dimensionless time ; 
time ; 
solution to supplementary problem, 
equations (8) and (9); 
N x N matrix; 
parameter; 
dimensionless spatial position; 
spatial position. 

Greek symbols 

; 

thermal diffusivity; 
parameter; 

B 111 eigenvalue ; 

1: vector of measurements yi; 

AZ, estimated error in the prediction T,; 

a, vector of measurement errors; 

6, error. 

~~TRODU~ION 

THE DIRECT problem in transient heat conduction 
theory involves the evaluation of the interior 
conditions of a region from the boundary and initial 

conditions of that region. A corresponding inverse 
problem involves the evaluation of a boundary 
condition from the remaining boundary and initial 
conditions and some interior condition. An impor- 
tant characteristic of inverse heat conduction theory 
is well illustrated by a quotation from Stolz [l] : 

“In a heat-conduction system the effect of boundary 
conditions is always damped at interior points, and the 
inverse problem involves basically the extrapolation of 
the damped datum to the surface.. .” 

In the direct problem of heat conduction, the higher 
frequency components of the boundary conditions 
will be damped at a higher rate than the lower 
frequency components, whereas in the inverse pro- 
blem, the higher frequency components of ihe 
internal measurements will be selectively amplified as 
the measurements are projected to the surface. Thus, 
any noise in the measurements will be amplified in 
the projection to the surface and the resulting surface 
condition predictions might be overwhelmed by the 
noise of the interior measurements. 

A second problem that arises in inverse con- 
duction theory is the question of the uniqueness of 
the surface condition histories as predicted by 
discrete internal measurements. One cannot hope to 
find a unique surface temperature history using only 
interior temperature measurements made at discrete 
times. There will be an infinity of surface tempera- 
ture histories that will satisfy a finite set of discrete 
internal measurements, and the surface conditions 
will only be resolvable to within certain limits. The 
consideration of the above problems when utilizing 
inverse theory in conjunction with discrete experim- 
ental data is a necessary part of the analysis. 

Many techniques have been presented to handle 
inverse problems in heat conduction theory. The 
techniques include graphical methods [2], finite 
difference and finite element methods [3-71, poly- 
nomial methods [8-121, and exact methods [I, 
13-193. The evaluation of thermal properties and 
temperature responses from thermocouple measure- 
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ments has also received attention [I’. X-24]. In Equations (1) and (2) become: 
geophysics, methods of handling inverse problems i2T ?T 
are well established. Since geophysicists often deal 

(7Y2 ?t ’ 
(5) 

with discrete and inaccurate data in making in- 
ferences about the earth, it is natural that some of with 

their methods can be adapted for use in the inverse 

heat conduction area. One such method is that of 
Backus and Gilbert [25] who have developed an 
elegant method for quantitatively evaluating the 
resolving power (a mcasurc of uniqueness) and 

accuracy of predictions from discrete and inaccurate 

1. T(u, 0) = 0 

iT 
2. -~-- (0, t) = 0 

(7-Y 

(ha) 

(6b) 

3. T(l, t) = 7;(t) = ? (6~) 
methods. 

The purpose of this work is to adapt 
If, in addition, the temperature is approximately 

Backus--Gilbert inverse theory to the predictions of 
known at interior points at discrete times, i.e. 

surface temperature histories of an infinite slab given T(r:,, TV) e *J,, i = 1,2 ,..., N, (6d) 
an insulated second surface condition and tempera- 

tures at some interior point that are known to within 
with errors A’/,, then the surface temperature history, 

some error at given discrete times. Comparisons 
T,(t), can be estimated. The estimation improves as 

between actual and predicted results, and trade-offs 
N increases and Ayi decreases. 

between resolving power and accuracy are 
For a known q(t) the direct solution of equations 

illustrated. 
(5) and (6) can be given by Duhamel’s formula [26] : 

AlVALYSlS 

Y 

T(s, t) = 7;(A) g (.Y, t - 7.) di., (7) 
.” 

Reductiorl of the problem to uppropriate,ftirm 

Consider an infinite slab (see Fig. 1) with constant 
where V is the solution to the supplementary 

thermal properties in which the temperature distri- 
problem 

bution is a function of position .s* and time t*. Let (>ZV i;v 

i.? ?t ’ 
(8) 

T(L,t*) = T,(t*) 

with 

1. V(X, 0) = 0 

2. g (0, t) = 0 

Pa) 

(9b) 

4 For the present case V can be expressed either as 

FIG. I. Geometry of the problem. an infinite series of cosines or an infinite series of 
error functions. The latter method is chosen for its 
better convergence at small times. The solution for V 

one side of the slab, Y* = 0, be insulated while the is given by [26] : 
second side, z* = L, be at an unknown temperature 
which varies with time. If the slab’s initial tempera- 
ture is zero, then the problem can be stated 

V(X, t) = i (- 1) 
n=O 

mathematically as: 

(1) 

with the following initial and boundary conditions: 
where 

1. T(.Y*, 0) = 0 @a) 
B,, = zn+ 1 (11) 

Thus 

(2b) 

3. T(L, t*) = T&t*) = ? (2C) 

Introducing the dimensionless independent variables, 

y = y*.!L 

, = x[*‘L?. 

(3 
If T,(i) is unknown but T(x, t) is known to within 

(4) some measurement error at the points Q, zi, i = 



Accuracy and resolving power of one dimensional transient inverse heat conduction theory 1223 

1,2,. . , N, then equation (7) can be written as where 

yi e T(Eir Ti) = 
! 

._ 

)‘=[Y1,‘Jz,...,YJ (20) 
0 

’ T,(i) g (q, ri-l)d& 

i=1,2 ,..., N. (13) T, = [T,(&)> 7X&), , T,(A,,,)]~ (21) 

For convenience let 

; (Ei, ti - A), 1 < zi, 

K(ci, zi, A) = (14) 

1 > Ti, 

where K(E~, zi, 2) is an integrating kernel. Equation 
(13) can be written as 

i 

‘.\ 
y; A T,(I)K(c, tjr l)dl, i = 1,2,. , N, (15) 

-0 

where 7,\. is the time of the last known interior 

temperature measurement Y,~. The problem of 
evaluating T,(I) from discrete and noisy empirical 
data yi is reduced to finding <T,(1) from the 
simultaneous integral equations (15). 

Solution ofthe simultaneous integral equations 
Although the inverse problem posed is very 

specific (equations (5) and (6) with interior con- 
ditions (6d)), any inverse conduction problem expres- 
sible in the form of equation (15) can be evaluated 

using the following technique. Consider the set of 

integral equations of the form: 

rN yi & 
s 

T,(I)K(ri, TV, I)dd, i = 1,2 ,..., N, (16) 
0 

where ri is the position vector of the measurement yi 
(not necessarily one dimensional). We wish to find a 
T,(i) over the interval 0 < t < 7, that best satisfies 
equation (16) at the measurements yi,i = 1,2,. . , N. 
Consider the analogy between equation (16) and the 

inverse problem in linear algebra. Write equation 
(16) as follows: 

pi G jmm ,ii T,(lj)[K(ri, rip lj)An], 
- I 

i= 1,2 ,...,N, (17) 

where the interval (0,~~) is divided into M equal 

segments, A.1, and lj represents the value of I at the 
midpoint of thejth segment. Thus 

A1 = r,,JM. (18) 

Equation (17) represents a system of N equations 
with M unknowns TS(nj) with M + CO. Expressing 
equation (17) in matrix form gives: 

y & AT 
5, (19) 

If A was square with rank equal to its order then a 

unique inverse would exist ; 

T, & A-‘?, (23) 

with the error in T, of 

AT, = A-‘Ay, (24) 

where 

At = [AY,, AYZ, . . . . Ay.\17 (25) 

AT, = [AT,,, AT,., . . . . AT,,]~. (26) 

For the present problem ii is not square and only a 
pseudo-inverse [27] B can be found with the 
properties 

but 

AB = f (I the identity matrix), (27) 

BA#i, (28) 

where B is chosen such that BA approximates i as 
well as possible. The approximate solution, TS, to 
equation (19) will then be: 

Ts = BY, (29) 

and from equation (19) 

TS = BAT,. (30) 

Thus, the prediction t, is a weighted average of the 
actual surface temperatures T,,, j = 1,2,. . . , M, where 

the weighted function is given by the kth row of BA. 
Dealing with N x M matrices with M -+ cc is 

unrealistic. However, an important concept surfaces 
from the linear algebra analogy. Equation (29) states 

that T, can be approximated by By and each element 
in T, is approximated by a linear combination of the 

measurements yi. If the measurements were exact and 
if an infinity of independent measurements were 
available then a B would exist such that 

BA=T, (31) 

and equation (30) would become: 

TS = T,. (32) 

In view of the above discussion, let T, at some time t 
be approximated by a linear combination of the 
measurements yi, i.e. 

T,(t) G i aiyi = t(t). (33) 
i= 1 
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Using equation (16) in equation (33) gives: 
. . 

or 

t(t) * i ai ( ' T,(i)K(r,, T,, J)di,, (34) 
i=l .’ 0 

R(f) k _I;‘ -r,cr)[ i aiK(ri, TV, A) di (35) 
i=l I 

In analogy with equation (31), if the a, can be chosen 

such that 

D(/I) = c U;K(ri, T,, j.1, 
i=l 

(36) 

represents a Delta-Dirac function &t--i), then 

E(t) =L T,(t). (37) 

Since an exact representation for a finite number of 

measurements, N, is not possible, the a, are chosen 
such that D(1) approximates s(t-1.) as well as 
possible. Using equation (36) in equation (35) gives 

r;(t) = /%.’ T,(i)D(jV)di. (38) 
.o 

Thus, D(i) is an averaging kernel and the resulting 
predictions for the surface condition, R(t), will be a 

weighted average of the actual surface condition 
7;(t). If D(i.) has an infinitesimal width and is 
centered at i = t, then T,(t) is resolved totally by 
t(t). Given the kernels K(ri, T,, I) of equation (16), if 
the a, of equation (36) can be chosen such that D(i) 
best approximates a Delta-Dirac function at time f, 

then by equation (33), the approximate surface 
condition is given by: 

.\ 
i,(t) = 1 a,;,,. (33) 

i= 1 

Choosing the coc$iicients u, 
In evaluating the coefficients a, of equation (36), a 

measure of closeness to the Delta-Dirac function is 

needed. One possibility is to minimize the square of 
the difference between D(i) of equation (36) and the 
Delta-Dirac function. In this case, the parameter I 

as defined below must be minimized by choosing the 
appropriate a, for each time t. 

‘-\ 

I= [&-I,)-D(L)]‘di.. (39) 
.O 

Minimizing equation (39) does not necessarily give 
the optimum result since all points in the interval 0 
< i < z, are weighted equally. Backus and Gilbert 
[25] suggest the following criteria: 

8.. \ 
I= (t - l)‘D2(A) dl, (40) 

.0 

with the additional constraint that D(i) be un- 
imodular, i.e. 

* \ 
D(i.)di = 1. (41) 

.n 

By minimizing equation (40) with the constraint of 
equation (41). a narrower D(i.) will be found than 
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would be possible by the minimization of equation 
(39) due to the weight function (t-i)‘. In view of 
equation (40), the spread of D(i) around t can be 

defined as: 

*.\ 
s = 30 (t -/1)‘D2(jJ di., (42) 

.O 

where the quantity 30 is a normalization constant 
chosen so that the spread, s, of a D(i.) of the form of 

a triangular wave as shown in Fig. 2 will be equal to 
the width of the wave. The predictions Ts(t), equation 
(38), will be a weighted average of the actual surface 
temperature over a time interval represented by the 

spread of the Delta-Dirac approximating function 
D(1). The spread, therefore, quantifies a minimum 

time scale (temporal resolution) over which 7;(t) can 
be determined for a given set of measurement times 
and positions. 

D(X) 

t-g t t+; 

x 
FIG. 2. Idealized form of D(i.). 

Using equation (36) in equations (41) and (42) 
gives : 

with 

u'a= 1 

s = a'Sa, 

where 

a = [u,, u2, ., uJ7 

u = [q, u2, ., uy]“, 

’ \ 

u, = K(ri. si, i) dE, 
.‘O 

Also 

S 

I 

11 S,, S,,-i 
s= f 

SY, s,, ~’ 

where 

--\ 
sij = 30 (t-A:)2K(rjr~ir/1)K(rj,Tj,i.) d/l. 

.O 

Once the a vector is chosen, q(t) is given by: 

z(t) = a'7, 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 
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where 

P= [Y1,Y*,...,Ys17‘, (51) 

and the error in ps(t) due to errors in 7 is 

AT(t) = arAy. (52) 

If the measurement errors, Ayi, have a probability 
distribution whose means are zero and whose second 
moments exist then we can let the square of the error 

be denoted by .s2 ; thus: 

~~ = (At(t))’ = aTEa (53) 

where i? is the covariance matrix. 

rA’ii AYE 

L Ay,\.Ayi . . . AY,~~Y \ 

Backus and Gilbert [25] solved equations (43) (44), 
and (53) and found that as the spread, s, decreased, 
the error, E, increased. Physically, this means that as 

the temporal resolution of the surface conditions 

increases, the error in the predicted surface con- 
ditions increased. By choosing an a such that the 

spread, s, is not optimized, a smaller error, E, can be 

obtained. A compromise between resolving power 
and accuracy must be reached. Define 

Vv = (1 -b)S+jLZ. 

Then a’wa becomes: 

(55) 

w = aTWa = (1 -_B)s+~E~. (56) 

By varying /3 between 0 and 1 and minimizing w with 
respect to a, the trade-offs between resolving power, 

s, and accuracy, c, can be studied. The optimum 
solution of equation (56) for a given /$ with the 
constraint of equation (43) is [25] : 

Once the a vector is found from equation (57) the 

spread, error, and surface condition at time t can be 
given as: 

s = a“Sa (44) 

c2 = arEa (53) 

t(f) = a“y. (50) 

RESULTS 

Errorjiee data 
Although all experiments have error, studying the 

effects of errorless measurements can give insight 
into the maximum possible resolution of surface 
conditions available from the measurements. The 
only error introduced into the problem is the error 
due to computer roundoff. To illustrate the power of 
the method, the method was implemented on an 
IBM 360 using single precision arithmetic. 

As an initial example, consider measurements 
taken at x = 0.5 at equally spaced times. Using the 

2.0 
0 Case I: N=ZO. At=.1 
l Care2:N=lO,At=.2 

1.6 
x Case3.N= II, At=.l, 

centered an t 

” 1.2 1 

9 
i06 . *. . . . 4 0 

. * 

0.4 005~B@@00 
t 
t 

TIME, t 

FIG. 3. Spread vs time for error-free data. 

time and location of each measurement (the actual 

value of the measurement is not needed) graphs for 

spread, s, vs time were generated as illustrated in Fig. 
3. Three cases were considered. The first case 

consisted of 20 measurements taken at 20 equally 
spaced times (At = 0.1) in the interval 0 < t < 2.0. 
The values of spread of the surface predictions were 

generated for the same discrete times. The figure 
illustrates that the spread is a weak function of time 
over most times of interest. Around t = 2, however, 
there is a sharp rise in the spread reflecting the 
inability of the internal measurements taken over the 
interval 0 < t < 2.0 to sense changes in the surface 
temperature at t = 2. 

The second case considered consisted of 10 equally 
spaced measurements at x = 0.5 with At = 0.2 over 
the interval 0 < t < 2.0. As in the first case, the 
spread increases rapidly near t = 2, the end of the 

sampling period. The spread also increased signi- 
ficantly as a result of the fewer measurements. 

The third case illustrates that the surface tempera- 

ture history can be represented by using 11 measure- 
ments, 5 on each side of the time of interest and 1 at 
the time of interest, with approximately the same 
spread as using all 20 measurements distributed over 
the entire interval. The surface temperature histories 
are thus largely a function of measurements made 
during a At = 1 interval surrounding the time of 
interest. Table 1 further illustrates the preceding 

point; tabulated are the a vectors at t = I for cases 1 
and 3.,Since ps(l) = a’ry then Ts depends mostly on 
the measurements made in the interval around t 
= 1.0. As shown in Table 1, the measurement taken 
at t = 1.1 has the largest weight indicating that of all 
the measurements, the measurement at t = 1.1 best 
reflects the conditions on the surface at t = 1 .O. 

In view of the above results, an additional plot of 
spread vs time for 0.9 < t < 1.1 was made in the 
hope that at some time within the interval the spread 
is a minimum. Eleven measurement times were used 

with At = 0.1, centered at t = 1.0. The results, as 
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Table I. The coefficient vector a for t = 1 for cases I and 3 

Time of measurement a, Case I a. Case 3 

0.1 - 0.0002 159 
0.2 - 0.0008528 
0.3 -0.0022914 
0.4 - 0.0056048 
0.5 -0.0132885 
0.6 - 0.03 13024 
0.7 - 0.073896 
0.8 -0.169285 
0.9 -0.516504 
1.0 -0.089510 
1.1 1.664683 
I.2 0. I40083 
I.3 0.0463462 
1.4 0.0210975 
1.5 0.0117186 
1.6 0.0073413 
1.7 0.0050258 
1.8 0.0037523 
1.9 0.0030969 
2.0 0.0045095 

-0.0185589 
-0.0326914 
-0.075551 
-0.171887 
- 0.523498 
- 0.092030 

1.687145 
0.142325 
0.0467732 
0.0228954 
0.0208453 

0.6 

“. 0.4 

9 
z 
: 0.2 

0.0 1 

0.9 0.94 0.96 I .02 1.06 1.10 

TIME, t 

FIG. 4. Spread vs time for error-free data; 0.9 $ t < I, I 

shown in Fig. 4, illustrate a periodic behavior. The 

spread of a surface temperature prediction at t 
= 1.04 is less than one-half the spread for t = 0.99. 
Tabulated in Table 2 are the a, coefficients for the 
times corresponding to the peaks and troughs of the 

spread curve of Fig. 4. The contents of Table 2 
indicate that the temperature at t = 0.94 depends 
mostly (see equation (50)) on the measurement made 

P. MULHOLLANII 

at t = 1.0. The predicted surface temperature re- 
sponses at t = 0.99, 1.04, and 1.09 depend mostly on 

the measurements at t, = I .I, I. I, 1.2. respectively. 
The above results reflect the time lag in the response 
of an interior point to a surface condition. 

In the previous results presented. no mention of 

the magnitude of the measurements were made. The 
previous results do not depend on the magnitude of 
the measurements, but only upon their time and 

location. After the analysis as presented is complete 
and the a vector found for each time of interest. the 

experiment can be run for any surface temperature 
history, 7;(t), with measurements, ;‘,, made at times r,. 
The surface temperature histories can then be 
analysed by use of equation (50) for each a: 

E(t) = a’ 7. (50) 

As an example, consider the surface temperature 

history given by the solid line of Fig. 5. Using the 
interior conditions at x = 0.5 generated by the exact 

solution (see [lo]) of the corresponding forward 
problem with the surface conditions indicated, the 
corresponding approximate surface temperature his- 

tory was evaluated by the use of equation (50) and 
the a vectors calculated from the previous results. 

2.0 

0.4 0.6 1.2 1.6 2.0 

TIME, t 

FIG. 5. Actual and predicted surface temperatures as a 
function of time. The horizontal bars represent spread. 

Number of measurements = 20. 

Table 2. The coefficient vector as a function of time 

Time of 
measurement a, t = 0.94 a, t = 0.99 a,t = 1.04 a, I = 1.09 

0.5 - 0.02795 -0.02159 -0.01121 - 0.00892 
0.6 -0.05190 - 0.03798 - 0.02099 -0.01614 
0.7 -0.12711 - 0.08792 - 0.05086 - 0.03729 
0.8 - 0.29730 -0.19755 -0.12628 - 0.08763 
0.9 - 1.38934 -0.67391 - 0.29680 - 0.19806 
1.0 2.70276 0.54247 - 1.38978 - 0.67669 
I.1 0.13458 1.26157 2.70593 0.54668 
1.2 0.03266 0.13201 0.13423 1.26674 
1.3 0.01378 0.04635 0.03262 0.13326 
1.4 0.00764 0.02285 0.0 1429 0.04796 
1.5 0.00774 0.02121 0.01199 0.03504 
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additional information. Therefore, decreasing At 
eventually leads to algorithmetically singular mat- 
rices. Using double precision computation would 
extend the lower limit of At, but no additional 
info~ation would be gained since the spread would 
not significantly improve. 

0 0.4 0.8 1.2 1.6 2.0 

TIME, t 

FIG. 6. Actual and predicted surface temperatures as a 
function of time. The horizontal bars represent spread. 

Number of measurements = 20. 

Also plotted for each prediction is the spread 
represented by a horizontal line “centered” on the 
time of the corresponding prediction. In all cases, the 
actual surface temperature lies well within the spread 
of the corresponding surface temperature. 

Illustrated in Fig. 6 is a comparison between 
predicted and actual surface tem~rature histories 
for an alternate T,(t). The errorless (within single 
precision machine accuracy) experimental internal 
measurements were simulated by using the following 
exact solution for the forward heat conduction 
problem with the surface condition of Fig. 6. Double 
precision arithmetic was used. 

W (-1)“-’ 
T(.u, t) = lOt+20 1 _____ 

“= 1 B,S 

x (1 -e-B:t)cos(B,,.x), 0 < t < 1 (58) 

T(.X, t) = lot +20 5 o”-’ 
“=I B,;7 

x (1 +emBi’- 2e-Ba(‘-‘))cos(B,,x), 

1 < t < 2, (59) 

where 

2n-1 
B,, = -IL. 

2 

As in the previous case x = 0.5. Truncating the series 
after 1200 terms gave simulated measurements 
accurate to 6 significant figures. All predictions lie 
within the spread of the corresponding surface 
conditions. The prediction at t = 1 is of particular 
interest. Equation (38) states that each prediction is 
a weighted average of the actual surface conditions. 
Thus, the prediction at t = 1 is in fact a weighted 
average of the actual surface conditions over an 
interval width of approximately At = 0.36. This 
indicates that for the present theory the prediction at 
such a peak (at t = 1) must always be less than the 
actual surface temperature at the peak for errorless 
data. 

As a result of one of the reviewers’ suggestions, the 
method was applied to errorless measurements taken 
at very small time steps, At. The results indicated 
that as At decreases below 0.5, no significant 
improvement in spread is obtained. Decreasing At 
only results in the need to invert larger matrices for 
which each additional measurement provides less 

Data with error 

By appropriately choosing a p for equation (56), a 
compromise between spread (resolving power) and 
accuracy can be attained for measurement data with 
errors. To illustrate this point, the present method 
was applied to the numerically generated measure- 
ments used in the previous cases. To simulate 
experimental error a normal independent distributed 
random error with a mean of 0 and a variance 
chosen so that the bound iO.02 (lo;, of 7;(2)) 
represents the 99;:) confidence level on the error, was 
added to the measurement data. In view of the 
results of the previous section (see Fig. 3) the surface 
temperature histories were analyzed by using the 1 I 
measurement data points closest in time (At = 0.1) 
to the surface temperature prediction time. In 
addition (see Fig. 4), the prediction times were taken 
as 0.14, 0.34, 0.54, . . . , 1.94 to minimize spread. 
Illustrated in Fig. 7 is a plot of spread vs error (also 
99”:, confidence level) for t = 0.14, 0.94, and 1.74. It 
is interesting to note that for prediction error greater 
than the measurement error, the three cases nearly 
coincide and are only weak functions of the error. To 

4 

0 o.oi 0.02 0.03 0.04 0.05 0.06 

ERROR, 8 

FIG. 7. Spread as a function of error for t = 0.14. 0.94. 1.74. 

give predictions with error on the order of the 
measurement error without sacrificing spread, a 
value of p was chosen such that the magnitude of the 
error was in the interval (0.03, 0.04) over the entire 
range of interest. Figure 8 illustrates the results of 
such a choice of p. The inclined solid line represents 
the actual surface temperature, and the points 
represent the predictions. The horizontal and vertical 
bars on each point represent the spread and error for 
each prediction. The spread bars are centered on the 
prediction times strictly for convenience. The centers 
of the actual weighting functions (D(n) of equation 
(38)), however, are not necessarily at the prediction 
times. The result of each prediction is a weighted 
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CONCLUSIOM 

A method has been presented that enables the 
quantitative evaluation of the resolving power and 
accuracy of surface temperature predictions gene- 
rated from inaccurate and discrete interior measure- 

ments. While the method was only demonstrated for 

a simple geometry (1 -D). it can be adapted to more 
general geometries by choosing the appropriate 

definition for spread (see [19]). The method can also 
be extended to handle surface flux evaluations as nil1 

be demonstrated in a later paper. 

TIME, t 

FIG. 8. Actual and predicted surface temperatures as a 
function of time for measurement data with 0.02 error. The 

horizontal and vertical bars represent spread and error. 

0.4 0.0 1.2 1.6 2.0 

TIME, t 

FIN;. 9. Actual and predicted surface temperatures as a 
function of time for measurement data with kO.1 error. 
The horizontal and vertical bars represent spread and error. 

0 0.4 0.8 1.2 1.6 2.0 

TIME, t 

F~ti. 10. Actual and predicted surface temperatures as a 
function of time for measurement data with +0.5 error. 
The horizontal and vertical bars represent spread and error. 

average, within the vertical error bounds, of the 
actual surface temperature history over a time spread 
represented by the horizontal bars. 

Figures 9 and IO show predictions for the 
alternate surface temperature history. In the case of 
Fig. 9, a kO.1 error (10,:) ot T,(l)) was added to the 
simulated measurements while in the case of Fig. 10, 
a kO.5 error (S”;, of T,(l)) was added. In both cases 
the predictions are within the bounds illustrated and 
no instability (which occurs in some other methods) 
is apparent. 
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PRECISION ET POUVOIR DE RESOLUTION D’UNE THEORIE INVERSE DE LA 
CONDUCTION THERMIQUE APPLIQUE A DES MESURES DISCRETES ET IMPRECISES 

R&sum&Le probleme inverse de la conduction thermique est dtfini comme correspondant a des 
conditions internes donnies l’inconnue &ant une condition de surface. Dans ce travail, l’histoire de la 
temptrature de surface d’un mur infini est ivaluee ti partir de mesures internes, disc&es et impr&ises. La 
mtthode de Backus et Gilbert est utilisee pour dkterminer le pouvoir de r&solution des mesures et la 
pr&cision des calculs de la temptrature de surface. On illustre la distinction ti faire entre le pouvoir de 

r&solution et la pr&cision. 

DIE GENAUIGKEIT UND DAS AUFLOSUNGSVERMOGEN EINER EINDIMENSIONALEN 
INSTATIONAREN INVERSEN WjiRMELEITUNGSTHEORIE BE1 IHRER ANWENDUNG 

AUF DISKRETE UND UNGENAUE MESSUNGEN 

Zusammenfassung-Das inverse Warmeleitungsproblem ist definiert als die Aufgabe, bei der innere 
Bedingungen gegeben sind und die gesuchte Gr68e eine Oberflachenbedingung ist. In der vorliegenden 
Arbeit werden zeitlich zuriickliegende Temperaturverllufe an der Oberflache einer unendlichen Platte 
unter Verwendung diskreter, ungenauer innerer Messungen ermittelt. Die Methode von Backus und 
Gilbert wird verwendet, urn das AuflGsungsvermGgen der Messungen und die Genauigkeit der 
resultierenden Oberfltichentemperaturen zu bestimmen. Die Zusammenhange zwischen Aufldsungsver- 

miigen und Genauigkeit werden erlautert. 

TOqHOCTb M PA3PElUMMOCTb OAHOMEPHOfi HECTALJkiOHAPHOti 
06PATHOti TEOPMM TEl-IJIOflPOBO~HOCTW flPMMEHk4TEJIbHO 

K AMCKPETHbIM M fIPkI6JlMXEHHbIM kf3MEPEHMJIM 

AHHoTauna - 06paTHOfi 3aLta’ieii TenJlOnpOBOLlHoCTH RBJlBeTCK TaKall 3aIlaYa. B KOTOpOii BHyTpeHHHe 

yCnOBHR 3anaHb1, a HCKOMaR BenWiHHa npencTaBnneT co6oii ycnoBHe Ha noBepxHocTH. B HaCTOKmeii 

pa6oTe ki3MeHeHIle TeMnepaTypbl noBepxHocTe 6ecKoHeYHofi nnHTbl onpenennercr c ~OMOLI&K) 
LWCKpeTHbIX ki npH6JlHEeHHbIX H3MepeHHfi BHyTpeHHHX BeJlHWiH. Pa3~malollW CnoCO6HoCTb H3Me- 

FHHti W TOYHOCTb pe3yJIbTaTOB ,,3MepeHHfi TeMnepaTypbl nOBepXHoCTH Onpe~eJlSIeTCB MeTOllOM 

63KyCaP&KKKnb6epTa. nOKa3aHa B3aHMOCB113b MeXUly pa3pemHMoCTblO H TO’,HOCTb,oO. 
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