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Abstract—The inverse heat conduction problem is defined as one for which interior conditions are

prescribed and the desired quantity is a surface condition. In the present work, the surface temperature

histories for an infinite slab are evaluated using discrete and inaccurate internal measurements. The

method of Backus and Gilbert is used to determine the resolving power of the measurements and the

accuracy of the resulting surface temperature predictions. The trade-offs that exist between resolving
power and accuracy are illustrated.
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O mE B

;111

SRLEEREE

Greek symbols

%, thermal diffusivity;

B, parameter;

B eigenvalue;

¥, vector of measurements v;;

AT, estimated error in the prediction T};

Ay,  vector of measurement errors;
g, error.

INTRODUCTION
THE DIRECT problem in transient heat conduction
theory involves the evaluation of the interior
conditions of a region from the boundary and initial
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problem involves the evaluation of a boundary
condition from the remaining boundary and initial
conditions and some interior condition. An impor-
tant characteristic of inverse heat conduction theory
is well illustrated by a quotation from Stolz [ 1]:

“In a heat-conduction system the effect of boundary

conditions is always damped at interior points, and the

inverse problem involves basically the extrapolation of

the damped datum to the surface...”
In the direct problem of heat conduction, the higher
frequency components of the boundary conditions
will be damped at a higher rate than the lower
frequency components, whereas in the inverse pro-
blem, the higher frequency components of the
internal measurements will be selectively amplified as
the measurements are projected to the surface. Thus,
any noise in the measurements will be amplified in
the projection to the surface and the resulting surface
condition predictions might be overwhelmed by the
noise of the interior measurements.

A second problem that arises in inverse con-
duction theory is the question of the uniqueness of
the surface condition histories as predicted by
discrete internal measurements. One cannot hope to
find a unique surface temperature history using only
interior temperature measurements made at discrete
times. There will be an infinity of surface tempera-
ture histories that will satisfy a finite set of discrete
internal measurements, and the surface conditions
will only be resolvable to within certain limits. The
consideration of the above problems when utilizing
inverse theory in conjunction with discrete experim-
ental data is a necessary part of the analysis.

Many techniques have been presented to handle
inverse problems in heat conduction theory. The
techniques include graphical methods [2], finite
difference and finite element methods [3-7], poly-
nomial methods [8-12], and exact methods [I,
13-19]. The evaluation of thermal properties and
temperature responses from thermocouple measure-
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ments has also received attention [12, 20-24]. In
geophysics, methods of handling inverse problems
are well established. Since geophysicists often deal
with discrete and inaccurate data in making in-
ferences about the earth, it is natural that some of
their methods can be adapted for use in the inverse
heat conduction area. One such method is that of
Backus and Gilbert [25] who have developed an
clegant method for quantitatively evaluating the
resolving power (a measure of uniqueness) and
accuracy of predictions from discrete and inaccurate
methods.

The purpose of this work is to adapt
Backus—Gilbert inverse theory to the predictions of
surface temperature histories of an infinite slab given
an insulated second surface condition and tempera-
tures at some interior point that are known to within
some error at given discrete times. Comparisons
between actual and predicted results, and trade-offs
between resolving power and accuracy are
illustrated.

ANALYSIS
Reduction of the problem to appropriate form
Consider an infinite slab (see Fig. 1) with constant
thermal properties in which the temperature distri-
bution is a function of position x* and time ¢*. Let

T(L,t%) = Ts(t*)

L

L—

P

FiG. 1. Geometry of the problem.

one side of the slab, x* = 0, be insulated while the
second side, x* = L, be at an unknown temperature
which varies with time. If the slab’s initial tempera-
ture is zero, then the problem can be stated
mathematically as:

AT 1T

Ox*2 oy at*

(1)

with the following initial and boundary conditions:

I T(x*0)=0 (2a)

2 Loy =0 (2b)
ox

3. T(L.t%) = T,i*) = ? (2¢)

Introducing the dimensionless independent variables,
x = x*/L 3)
1= ar*/L2 (4)
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Equations (1) and (2) become:

&cT T
17 =, (5)
[GAN ct
with
1. T(x,0)=0 (6a)
oT
2. ——(0,1)=0 (6b)
ox
T ) =T()="? (6¢)

If, in addition, the temperature is approximately
known at interior points at discrete times, i.e.

T(e,t)=7v, i=12,....N,

with errors Ay,, then the surface temperature history,
T.(t), can be estimated. The estimation improves as
N increases and Ay; decreases.

For a known T,(t) the direct solution of equations
(5) and (6) can be given by Duhamel’s formula [26]:

(6d)

oV

T = | T2

W0

(x,t—2)d4, (7

a

where V is the solution to the supplementary
problem

a3V _ % ®)
ot oA ‘
with
. V{ix,00=0 (9a)
%4
2. ©0,6)=0 (9b)
Ox
;0, t<0
Ivitn=" (9¢)
1, t>0.

For the present case V can be expressed either as
an infinite series of cosines or an infinite series of
error functions. The latter method is chosen for its
better convergence at small times. The solution for V
is given by [26]:

V=¥ (—1p
n=0

X [-erfc(B"—'*; ) + erfc(%’—% )} . (10)

2/t

=V
where
B,=2n+1 (11)
Thus
av . 1 (=1
—_ Jt—=A)=——
a T e B

x [(B,,—x)ef‘””“" LA~
+(B,+x)e B x i ] (12)

If T,(4) is unknown but T(x,t) is known to within
some measurement error at the points ¢, 1

i =

i
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1,2,..., N, then equation (7) can be written as

3

R ov
=Tl 1) = J T(A) — (&, 1,—A)d4,
0 ot
i=12..,N. (13)
K(rh 117}'1)A'1
A _ K(l’z, T2, AI)AA'

K(ry, 1y, 41)AL

For convenience let

ov

E (8,', T,-_l),

A<,
K(g;, 1, A) = (14)
0, A>T,
where K (e, 7;, 4) is an integrating kernel. Equation
(13) can be written as

vi= | LK1, AdA, i=1,2,...

JO

(15)

where 1, is the time of the last known interior
temperature measurement vyy. The problem of
evaluating T,(41) from discrete and noisy empirical
data y, is reduced to finding T,(A) from the
simultaneous integral equations (15).

Solution of the simultaneous integral equations
Although the inverse problem posed is very
specific (equations (5) and (6) with interior con-
ditions (6d)), any inverse conduction problem expres-
sible in the form of equation (15) can be evaluated
using the following technique. Consider the set of
integral equations of the form:
i=12,...,N,

wﬁmemKMnJNL (16)

0

where r; is the position vector of the measurement v,
(not necessarily one dimensional). We wish to find a
T,(4) over the interval 0 < t < 7, that best satisfies
equation (16) at the measurements y,i=1,2,...,N.
Consider the analogy between equation (16) and the
inverse problem in linear algebra. Write equation
(16) as follows:

M

p= lim Y TAHKE, 1, A)AM],

M-w j=1

i=12...,N, (17)

where the interval (0,1y) is divided into M equal
segments, A4, and A, represents the value of 4 at the
midpoint of the jth segment. Thus

AL = 1, /M. (18)

Equation (17) represents a system of N equations
with M unknowns T,(4;) with M — co. Expressing
equation (17) in matrix form gives:

y = AT,, (19)

K(ry, 7y, 4;)A4
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where
Y= [71> V25 -5 V\']T (20)
Ts = [Ts(j‘l)! 7;(}*2), sy Ts()w)]T (21)

K(ry, ty, An)AA

K(r‘\'a Ty j'M )Al

If A was square with rank equal to its order then a
unique inverse would exist ;

T,=A17, (23)
with the error in T, of
AT, = A" Ay, (24)
where
Ay = [Ayy, Ay, - Ay ]T (25)
AT, = [AT, ,AT,, ..., AT, ]". (26)

For the present problem A is not square and only a
pseudo-inverse [27] B can be found with the
properties

AB =1 (I the identity matrix), 2n

but
BA #1, (28)

where B is chosen such that BA approximates T as

well as possible. The approximate solution, T,, to
equation (19) will then be:
T, = By, (29)
and from equation (19)
T, = BAT, (30)

Thus, the prediction T,,_is a weighted average of the
actual surface temperatures T, ,j = 1,2,..., M, where
the weighted function is given by the kth row of BA.

Dealing with N x M matrices with M —cc is
unrealistic. However, an important concept surfaces
from the linear algebra analogy. Equation (29) states
that T, can be approximated by By and each element
in T, is approximated by a linear combination of the
measurements 7,. If the measurements were exact and
if an infinity of independent measurements were
available then a B would exist such that

BA=1, (31)
and equation (30) would become:
T,=T. (32)

In view of the above discussion, let T, at some time ¢
be approximated by a linear combination of the
measurements y,, i.e.

N

TO=3Y ay= T,@).

i=1

(33)
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Using equation (16) in equation (33) gives:

N

i=1

e ‘ T.K(r, t, Adi, (34)
i=1 J0
or
r"\ N
T = ’Ts(;")|:2 a;K(r;, u,i)d/{J. (35)

w0

In analogy with equation (31), if the g; can be chosen
such that

N

D) = Z a;K(r;, t;, A), (36)
i=1
represents a Delta—Dirac function §(t — 4), then
T(0) = T,(0). (37)

Since an exact representation for a finite number of
measurements, N, is not possible, the a; are chosen
such that D(i) approximates d(t—4) as well as
possible. Using equation (36) in equation (35) gives

(38)

Thus, D(4) is an averaging kernel and the resulting
predictions for the surface condition, T.(r), will be a
weighted average of the actual surface condition
T.(t). If D(’) has an infinitesimal width and is
centered at . =1, then T,(t) is resolved totally by
T.(t). Given the kernels K(r;, t;, 1) of equation (16), if
the a; of equation (36) can be chosen such that D(4)
best approximates a Delta—Dirac function at time 1,
then by equation (33), the approximate surface
condition is given by:

N

L0 =73 am: (33)

i=1
Choosing the coefficients a;

In evaluating the coefficients a; of equation (36), a
measure of closeness to the Delta—Dirac function is
needed. One possibility is to minimize the square of
the difference between D(4) of equation (36) and the
Delta—Dirac function. In this case, the parameter /
as defined below must be minimized by choosing the
appropriate g, for each time ¢.

I= A (8(t—4)—D(A)]*dA.

JO

(39)

Minimizing equation (39) does not necessarily give
the optimum result since all points in the interval 0
< 4 < 1y are weighted equally. Backus and Gilbert
[25] suggest the following criteria:

N

I = (¢t —2)?D*(A)d4,

{40)
0

with the additional constraint that D(i) be un-

imodular, i.e.

oy

D(})di = 1.

(41)

v 0
By minimizing equation (40) with the constraint of
equation (41), a narrower D(/Z) will be found than
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would be possible by the minimization of equation
(39) due to the weight function (t—4)% In view of
equation (40), the spread of D(4) around ¢ can be
defined as:

N

s =30 (t—A)?D?(A)d4, (42)

0

where the quantity 30 is a normalization constant
chosen so that the spread, s, of a D(4) of the form of
a triangular wave as shown in Fig. 2 will be equal to
the width of the wave. The predictions T,(t), equation
(38), will be a weighted average of the actual surface
temperature over a time interval represented by the
spread of the Delta—Dirac approximating function
D(A). The spread, therefore, quantifies a minimum
time scale (temporal resolution) over which 7(t) can
be determined for a given set of measurement times
and positions.

PION

Nj»

F1G. 2. Idealized form of D(4).

Using equation (36) in equations (41) and (42)
gives:

ula =1 (43)
s =a'Sa, (44)
with
a=[a;ay...,ay]" (45)
u=Tluguy...,uy]", (46)
where
u = K(r;, 1, A)dA (47)
JO
Also
[ s s
5= : B (48)
S\'l S‘\'\J
where
§,;=30 (t—2PK(r, 71, AK(r;,7;,4)dA. (49)
O
Once the a vector is chosen, T,(t) is given by:
Ti(t) = a’y, (50)
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where
Y= [Vla Y2s -5 'V.\']Ta (51)
and the error in T;(t) due to errors in y is
AT(t) = aTAy. (52)

If the measurement errors, Ay, have a probability
distribution whose means are zero and whose second
moments exist then we can let the square of the error
be denoted by ¢2; thus:

e2 = (AT,(1))* = a’Ea (53)
where E is the covariance matrix.
[AvAy, AnAy, Ay, Ay
g 2780 : (54)
AyyAy, AyyAyy

Backus and Gilbert [25] solved equations (43) (44),
and (53) and found that as the spread, s, decreased,
the error, g, increased. Physically, this means that as
the temporal resolution of the surface conditions
increases, the error in the predicted surface con-
ditions increased. By choosing an a such that the
spread, s, is not optimized, a smaller error, ¢, can be
obtained. A compromise between resolving power
and accuracy must be reached. Define

W = (1—p)S+E. (55)
Then a” Wa becomes:
w=aTWa = (1—f)s+fe> (56)

By varying § between 0 and 1 and minimizing w with
respect to a, the trade-offs between resolving power,
s, and accuracy, ¢, can be studied. The optimum
solution of equation (56) for a given f, with the
constraint of equation (43) is [25]:

W ln

= —, 57
a(p) TW-in (57)
Once the a vector is found from equation (57), the
spread, error, and surface condition at time ¢ can be

given as:

s=a’Sa (44)
&2 =a"Ea (53)
T.(t) = a”y. (50)

RESULTS

Error free data

Although all experiments have error, studying the
effects of errorless measurements can give insight
into the maximum possible resolution of surface
conditions available from the measurements. The
only error introduced into the problem is the error
due to computer roundoff. To illustrate the power of
the method, the method was implemented on an
IBM 360 using single precision arithmetic.

As an initial example, consider measurements
taken at x = 0.5 at equally spaced times. Using the
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F1G. 3. Spread vs time for error-free data.

time and location of each measurement (the actual
value of the measurement is not needed) graphs for
spread, s, vs time were generated as illustrated in Fig.
3. Three cases were considered. The first case
consisted of 20 measurements taken at 20 equally
spaced times (At = 0.1) in the interval 0 <t < 2.0.
The values of spread of the surface predictions were
generated for the same discrete times. The figure
illustrates that the spread is a weak function of time
over most times of interest. Around t = 2, however,
there is a sharp rise in the spread reflecting the
inability of the internal measurements taken over the
interval 0 <t < 2.0 to sense changes in the surface
temperature at ¢t = 2.

The second case considered consisted of 10 equally
spaced measurements at x = 0.5 with At = 0.2 over
the interval 0 <r < 2.0. As in the first case, the
spread increases rapidly near t = 2, the end of the
sampling period. The spread also increased signi-
ficantly as a result of the fewer measurements.

The third case illustrates that the surface tempera-
ture history can be represented by using 11 measure-
ments, 5 on each side of the time of interest and 1 at
the time of interest, with approximately the same
spread as using all 20 measurements distributed over
the entire interval. The surface temperature histories
are thus largely a function of measurements made
during a At =1 interval surrounding the time of
interest. Table 1 further illustrates the preceding
point; tabulated are the a vectors at t = | for cases |
and 3. Since T(1) = a”y then T, depends mostly on
the measurements made in the interval around ¢
= 1.0. As shown in Table 1, the measurement taken
at t = 1.1 has the largest weight indicating that of all
the measurements, the measurement at t = 1.1 best
reflects the conditions on the surface at ¢t = 1.0.

In view of the above results, an additional plot of
spread vs time for 0.9 <t < 1.1 was made in the
hope that at some time within the interval the spread
is 2 minimum. Eleven measurement times were used
with Az = 0.1, centered at ¢ = 1.0. The results, as
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Table 1. The coefficient vector a for t = 1 for cases | and 3

Time of measurement a, Case | a, Case 3
0.1 —0.0002159
0.2 - 0.0008528
0.3 —0.0022914
0.4 —0.0056048
0.5 —0.0132885 —-0.0185589
0.6 —0.0313024 -0.0326914
0.7 —0.0738%6 --0.075551
0.8 —0.169285 —-0.171887
0.9 —0.516504 —(.523498
1.0 —0.089510 ~-0.092030
1.1 1.664683 1.687145
1.2 0.140083 0.142325
1.3 0.0463462 0.0467732
1.4 0.0210975 0.0228954
1.5 0.0117186 0.0208453
1.6 0.0073413
1.7 0.0050258
1.8 0.0037523
1.9 0.0030969
2.0 0.0045095
0.6
-
“ 04
2 )
&
& o2t
0.0 A el — e
0.9 094 0.98 1.02 1.06 110
TIME,

F1G. 4. Spread vs time for error-free data; 0.9 <t < 1.1

shown in Fig. 4, illustrate a periodic behavior. The
spread of a surface temperature prediction at t
= 1.04 is less than one-half the spread for t = 0.99.
Tabulated in Table 2 are the qg; coefficients for the
times corresponding to the peaks and troughs of the
spread curve of Fig. 4. The contents of Table 2
indicate that the temperature at ¢t = 0.94 depends
mostly (see equation (50)) on the measurement made
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at r=1.0. The predicted surface temperature re-
sponses at t = 0.99, 1.04, and 1.09 depend mostly on
the measurements at ¢; = 1.1, 1.1, 1.2, respectively.
The above results reflect the time lag in the response
of an interior point to a surface condition.

In the previous results presented, no mention of
the magnitude of the measurements were made. The
previous results do not depend on the magnitude of
the measurements, but only upon their time and
location. After the analysis as presented is complete
and the a vector found for each time of interest, the
experiment can be run for any surface temperature
history, T,(t), with measurements, y;, made at times ¢,.
The surface temperature histories can then be
analysed by use of equation (50) for each a:

T(ty=a'y. (50)

As an example, consider the surface temperature
history given by the solid line of Fig. 5. Using the
interior conditions at x = 0.5 generated by the exact
solution (see [10]) of the corresponding forward
problem with the surface conditions indicated, the
corresponding approximate surface temperature his-
tory was evaluated by the use of equation (50) and
the a vectors calculated from the previous results.

20 r
1.6
- L
m
5 1.2
< -
14
§ 0.8 r
w
= L
04
0.0 04 08 12 1.6 2.0
TIME, t

F1G. 5. Actual and predicted surface temperatures as a
function of time. The horizontal bars represent spread.
Number of measurements = 20.

Table 2. The coefficient vector as a function of time

Time of
measurement a, t =094 a, t =099 a, r= 104 a, t =109
0.5 —0.02795 —0.02159 —-0.01121 —0.00892
0.6 —0.05190 —0.03798 —0.02099 —0.01614
0.7 -0.12711 —0.08792 —0.05086 —0.03729
0.8 —0.29730 ~0.19755 —0.12628 —0.08763
0.9 —1.38934 —0.67391 —0.29680 —0.19806
1.0 2.70276 0.54247 —1.38978 —0.67669
1.1 0.13458 1.26157 2.70593 0.54668
1.2 0.03266 0.13201 0.13423 1.26674
1.3 0.01378 0.04635 0.03262 0.13326
1.4 0.00764 0.02285 0.01429 0.04796
1.5 0.00774 0.02121 0.01199 0.03504
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F1G. 6. Actual and predicted surface temperatures as a
function of time. The horizontal bars represent spread.
Number of measurements = 20.

Also plotted for each prediction is the spread
represented by a horizontal line “centered” on the
time of the corresponding prediction. In all cases, the
actual surface temperature lies well within the spread
of the corresponding surface temperature.

Illustrated in Fig. 6 is a comparison between
predicted and actual surface temperature histories
for an alternate T,(t). The errorless (within single
precision machine accuracy) experimental internal
measurements were simulated by using the following
exact solution for the forward heat conduction
problem with the surface condition of Fig. 6. Double
precision arithmetic was used.

© (_I)n-!
T(x,8) = 106420 Y ———
n=1 Bu
x {1 —e B cos(B,x), 0<r<1 (58)
ool _1)n~1
Tix, 1) = 10t +20 —
n=1 n
x (1 +e~ 5~ 2e Bt =Dy cos(B, x),
t<t<2, 39
where
2n—1
= (60)

As in the previous case x = 0.5. Truncating the series
after 1200 terms gave simulated measurements
accurate to 6 significant figures. All predictions lie
within the spread of the corresponding surface
conditions. The prediction at t =1 is of particular
interest. Equation (38) states that each prediction is
a weighted average of the actual surface conditions.
Thus, the prediction at ¢t =1 is in fact a weighted
average of the actual surface conditions over an
interval width of approximately At = 0.36. This
indicates that for the present theory the prediction at
such a peak {at r = 1) must always be less than the
actual surface temperature at the peak for errorless
data.

As a result of one of the reviewers’ suggestions, the
method was applied to errorless measurements taken
at very small time steps, At. The results indicated
that as At decreases below 0.5, no significant
improvement in spread is obtained. Decreasing At
only results in the need to invert larger matrices for
which each additional measurement provides less
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additional information. Therefore, decreasing At
eventually leads to algorithmetically singular mat-
rices. Using double precision computation would
extend the lower limit of Af, but no additional
information would be gained since the spread would
not significantly improve.

Data with error

By appropriately choosing a f§ for equation (56), a
compromise between spread (resolving power) and
accuracy can be attained for measurement data with
errors. To illustrate this point, the present method
was applied to the numerically generated measure-
ments used in the previous cases. To simulate
experimental error a normal independent distributed
random error with a mean of 0 and a variance
chosen so that the bound +0.02 (1%, of T.(2)
represents the 997 confidence level on the error, was
added to the measurement data. In view of the
results of the previous section {see Fig. 3} the surface
temperature histories were analyzed by using the 11
measurement data points closest in time (Ar = 0.1)
to the surface temperature prediction time. In
addition (see Fig. 4), the prediction times were taken
as 0.14, 034, 054,...,194 to minimize spread.
Illustrated in Fig. 7 is a plot of spread vs error (also
99°/ confidence level) for 1 = 0.14, 094, and 1.74. It
is interesting to note that for prediction error greater
than the measurement error, the three cases nearly
coincide and are only weak functions of the error. To

4 o
t=0.14
3}
w 174
2
oz
@
% 0.94
!
o e2e] 002 003 004 005 008
ERROR, €

F1G. 7. Spread as a function of error for ¢ = 0.14, 0.94, 1.74.

give predictions with error on the order of the
measurement error without sacrificing spread, a
value of § was chosen such that the magnitude of the
error was in the interval (0.03, 0.04) over the entire
range of interest. Figure 8 illustrates the results of
such a choice of . The inclined solid line represents
the actual surface temperature, and the points
represent the predictions. The horizontal and vertical
bars on each point represent the spread and error for
each prediction. The spread bars are centered on the
prediction times strictly for convenience. The centers
of the actual weighting functions (D(4) of equation
(38)), however, are not necessarily at the prediction
times. The result of each prediction is a weighted
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FiG. 8. Actual and predicted surface temperatures as a
function of time for measurement data with 0.02 error. The
horizontal and vertical bars represent spread and error.
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F1G. 9. Actual and predicted surface temperatures as a
function of time for measurement data with +0.1 error.
The horizontal and vertical bars represent spread and error.
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FiG. 10. Actual and predicted surface temperatures as a
function of time for measurement data with +0.5 error.
The horizontal and vertical bars represent spread and error.

average, within the vertical error bounds, of the
actual surface temperature history over a time spread
represented by the horizontal bars.

Figures 9 and 10 show predictions for the
alternate surface temperature history. In the case of
Fig. 9, a 0.1 error (19, ot T,(1)) was added to the
simulated measurements while in the case of Fig. 10,
a +0.5 error (5%, of T.(1)) was added. In both cases
the predictions are within the bounds illustrated and
no instability (which occurs in some other methods)
1s apparent.

R. G. HiLLs and G. P. MULHOLLAND

CONCLUSIONS

A method has been presented that cnables the
quantitative evaluation of the resolving power and
accuracy of surface temperature predictions gene-
rated from inaccurate and discrete interior measure-
ments. While the method was only demonstrated for
a simple geometry (1 — D), it can be adapted to more
general geometries by choosing the appropriate
definition for spread (see [19]). The method can also
be extended to handle surface flux evaluations as will
be demonstrated in a later paper.
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PRECISION ET POUVOIR DE RESOLUTION D’'UNE THEORIE INVERSE DE LA
CONDUCTION THERMIQUE APPLIQUE A DES MESURES DISCRETES ET IMPRECISES

Résumé—Le probleme inverse de la conduction thermique est defini comme correspondant a des

conditions internes données I'inconnue étant une condition de surface. Dans ce travail, I'histoire de la

température de surface d’un mur infini est évaluée a partir de mesures internes, discrétes et imprecises. La

meéthode de Backus et Gilbert est utilisée pour déterminer le pouvoir de résolution des mesures et la

précision des calculs de la température de surface. On illustre la distinction & faire entre le pouvoir de
résolution et la precision.

DIE GENAUIGKEIT UND DAS AUFLOSUNGSVERMOGEN EINER EINDIMENSIONALEN
INSTATIONAREN INVERSEN WARMELEITUNGSTHEORIE BEI IHRER ANWENDUNG
AUF DISKRETE UND UNGENAUE MESSUNGEN

Zusammenfassung—Das inverse Wirmeleitungsproblem ist definiert als die Aufgabe, bei der innere

Bedingungen gegeben sind und die gesuchte GroBe eine Oberflichenbedingung ist. In der vorliegenden

Arbeit werden zeitlich zuriickliegende Temperaturverldufe an der Oberflache einer unendlichen Platte

unter Verwendung diskreter, ungenauer innerer Messungen ermittelt. Die Methode von Backus und

Gilbert wird verwendet, um das Auflosungsvermdgen der Messungen und die Genauigkeit der

resultierenden Oberflichentemperaturen zu bestimmen. Die Zusammenhinge zwischen Aufldsungsver-
mogen und Genauigkeit werden erlautert.

TOYHOCTb U PA3PEHIUMOCTb OJHOMEPHON HECTALIMUOHAPHOM
OBPATHOHM TEOPUU TEILJIONPOBOAHOCTU MPUMEHHUTEJILHO
K OUCKPETHBIM W MNPUBJIWXEHHbBIM UIMEPEHUAM

Annotanns — O6paTHOIli 3axayeil TENIONPOBONHOCTH ABJISETCS TakadA 3ajaya, B KOTOPO# BHYTPEHHHE
YCIIOBHA 3aJlaHbl, 2 HCKOMas BeJIHYMHA MpeACTaBaseT coboil ycioBHe Ha NoBepXHOCTH. B HacTosLuel
paboTe M3MCHEHHE TEMNEpaTypbl MOBEPXHOCTH OECKOHEYHOH IUIHTBI ONPENENACTCS C IOMOIUbIO
JTMCKPETHBIX U MPHOJIHKEHHBIX H3IMEPEHHI BHYTPEHHHMX BEJIMYHH. Paspelalomias cnocobHOCTb H3Me-
peHHil M TOYHOCTbL Pe3yTbTATOB M3MEPEHHH TeMNepaTypbl NOBEPXHOCTH OMPEAENAETCS METOHAOM
Bakyca—Ixunsbepra. [Tokaszana B3aUMOCBA3bL MEXIY Pa3pellIHMOCTLIO H TOYHOCTBIO.
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